IDEAL + Devices = IDEAL(D)
Rational Approach for Devices

Art Sedrakyan, MD, PhD
Vice-Chair, IDEAL Collaboration
Professor of HPR
Director of Patient-Centered Comparative Effectiveness Research
Medical Device Epidemiology Science and Infrastructure Center
SGE: US Centers for Medicare and Medicaid Services (CMS)
Specialist Adviser, TGA, Australia
Waste in The Healthcare Technology

Health outcomes are driven by productivity and cost-effectiveness of interventions

Health System Performance

Cumulative Health Outcome (e.g. QALYs)

- I. High Value Intervention
- II. Routine Treatment
- III. Low Value Intervention
- IV. Waste
- V. Adverse Events

- Vaccination
- Public health information campaigns
- Screening programs
- Chemotherapy for most cancers
- Renal dialysis
- Open heart surgery for patients >70
- Intensive care for very ill patients
- Lost or unnecessary diagnostic tests

Technology adverse effects
Intervention complications

Estimated at 20% - 30% of health spend

Current aggregate health system performance

Notes:
1. Based on US estimates
Source:
- Institute of Medicine of the National Academies, Best Care at Lower Cost: The Path to Continuously Learning Health Care in America, 2012;
WE HAVE TWO OPTIONS.
EITHER AN EVIDENCE-BASED TREATMENT OR AN EXCITING, RISKY ALTERNATIVE.
Diverse World of Devices For Advancing Public Health
U.S. Medical Device Manufacturing Companies by Number of Employees

Source: Dun and Bradstreet, Inc.
IDEAL-D Recognizes: Devices Are Regulated Products
IDEAL-D: Partnership!

- IDEAL-D has the structure to depict the stage of innovation & recommendations for **evidence accumulation** – ethical and political appeal for Total Product Life Cycle (TPLC) assessments
- IDEAL-D is **NOT** a regulatory pathway & serves as advanced framework & methodology for regulators to collaborate with surgeons
- Recognize key commonalities between devices and surgery reach out to innovators, regulators and payers
 - Operator skill and learning curves (e.g. implants or robots)
 - Strong preferences
 - Need for quality registry systems (dual purposing for both surgery and devices)
Stage 0

- Starting point of the IDEAL is pre-clinical development: materials & components are tested
- Current testing standards not always following ‘real-world’ situations (e.g. metal-on-metal testing)
- Where applicable surgeons with engineers should collaborate to develop better testing
- Encourage development of better standards for simulator & cadaver studies. Follow guidelines for animal studies
Stage 1

<table>
<thead>
<tr>
<th>• Compulsory reporting of all new innovations to accessible international registry</th>
<th>• Reporting of first in human use integrated into a process by which devices are patented and regulated but data often NOT available</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Confidential reporting of failed innovations</td>
<td>• May use existing channels (e.g. Clinical Trials.gov) BUT must allow learning</td>
</tr>
<tr>
<td></td>
<td>• Confidential reporting is OK but communication with innovators if needed to allow learning</td>
</tr>
</tbody>
</table>
Example: Endoluminal Platform

- Has a potential to eliminate colectomy: dramatic change
- Thorough pre-clinical testing using animal models
- 510k approval
- IRB plays important role: approval to do first-in-man study
| Stage 2a PDS | Often Combined Stage 2a and 2b within IDE. Many device iterations occur at Stages 0-1, but problems with device insertion/activation still requires iteration. Quality control and learning curve estimation very important: Studies conducted in experienced centers to minimize risks of harm. Regulators and IRB provide guidance on study designs |
| Small uncontrolled, consecutive. Record changes and their timing. Address “tinkering” Focus on technique & feasibility | May be the start of the registry |
| Stage 2b PES | Technique is stable multiple centers and investigators. Large uncontrolled prospective. Can study learning curve. Build consensus on NEED for trial and definitions and outcome expectations for a Stage 3 trial |
Example: Valve for SAVR

- *Edwards Intuity Elite* rapid deployment surgical valve
- TRANSFORM clinical trial, which treated 839 patients in 29 centers in the U.S
- Indirect comparison with STS data
<table>
<thead>
<tr>
<th>Comparative Trial</th>
<th>Trial(s) might follow stage 2a and 2b or Stage 1 (fused stages 2a, 2b and 3) within IDE. IDEAL-D:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure widely accepted, & possible replacement for current standard</td>
<td>learning, quality control & intervention definition should be overcome OR should not be major issues</td>
</tr>
<tr>
<td>Definitive comparison (preferably RCT) against current best practice after learning curves are overcome</td>
<td>Regulators & surgeons should reach consensus on international set of principles on need & timing of RCT</td>
</tr>
<tr>
<td>Consensus over definition of intervention, indications and quality control measures</td>
<td>Real world outcomes are critical as procedure cannot be widely accepted before the trial</td>
</tr>
</tbody>
</table>
Example: TAVR

- TAVR first approved in EU & first-in-man studies
- IDE in USA started with a trial that includes early learning outcomes
- Registry (IDEAL stage 4) is very important
- As technology is widely adopted registry should transition to quality system with reduced burden and industry funding
Stage 4 (long-term study)
Registries and are critically for IDEAL-D, *begin early*
particularly for “nth-of-a-kind” products that enter practice after stage 0.

For first-of-a-kind devices, registries ensure controlled introduction to market.

“Nested” RCTs possible within registries

<table>
<thead>
<tr>
<th>Stage 4 (long-term study)</th>
<th>Registries for monitoring late and rare problems and changes in use (indication creep)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 4</td>
<td></td>
</tr>
</tbody>
</table>
Example: Joint Replacement

- Metal on metal hips and most devices approved via 510K
- Did not require clinical evidence & there are 1000s of devices in the market
- Registry (IDEAL stage 4) is the only pragmatic system for evaluation
“Organized system that continuously and consistently collects relevant data in conjunction with routine clinical care, evaluates meaningful outcomes and comprehensively covers the population defined by exposure to particular device(s) at a reasonably generalizable scale (e.g. international, national, regional, and health system)’ with a primary aim to improve the quality of patient care.”

1. DEVICE DATA: Contains sufficient information to identify the device
2. UALITY SYSTEM: Is part of a health care delivery quality improvement system
3. BENEFICIAL CHANGE: Has established mechanisms to bring about beneficial change (e.g. stakeholder engagement)
4. EFFICIENCY: The registry is embedded in the health care delivery system (i.e., not overly burdensome, not complicated, not costly)
5. ACTIONABLE DATA: The registry provides actionable information in a relevant and timely manner to decision makers
6. TRANPARENCY: The governance structure, data access, and analytical processes of the registry are transparent
7. LINKABILITY: Information in the registry can be linked with other data sources for enhancement
8. TOTAL DEVICE LIFE-CYCLE: The registry as infrastructure for seamless integration of evidence throughout the device life cycle
Key Implications

• If a new implantable device is completely novel and requires learning then all IDEAL stages in a consecutive order including an RCT in Stage 3 are justified

• If a registry were set up for these devices from stage 1 to 4, subsequent “me too” devices could join it via ‘nested RCT design’

• For devices which have already bypassed IDEAL Stages 1-3 without assessment, (e.g. robotic surgery, hips, knees) a population registry with minimum data is needed, similar to international joint replacement registries