More efficient evaluation using registries and Bayesian approaches

Marion Campbell

Trialist & Statistician
Professor of Health Services Research
Dean of Research for Life Sciences & Medicine, University of Aberdeen
@marionkcampbell

Health Services Research Unit
University of Aberdeen

HSRU is core funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. The author accepts full responsibility for this talk.
IDEAL framework

<table>
<thead>
<tr>
<th>1 Idea</th>
<th>2a Development</th>
<th>2b Exploration</th>
<th>3 Assessment</th>
<th>4 Long-term study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Proof of concept</td>
<td>Development</td>
<td>Learning</td>
<td>Assessment</td>
</tr>
<tr>
<td>Number and types of patients</td>
<td>Single digit; highly selected</td>
<td>Few; selected</td>
<td>Many; may expand to mixed; broadening indication</td>
<td>Many; expanded indications (well defined)</td>
</tr>
<tr>
<td>Number and types of surgeons</td>
<td>Very few; innovators</td>
<td>Few; innovators and some early adopters</td>
<td>Many; innovators, early adopters, early majority</td>
<td>Many; early majority</td>
</tr>
<tr>
<td>Output</td>
<td>Description</td>
<td>Description</td>
<td>Measurement; comparison</td>
<td>Comparison; complete information for non-RCT participants</td>
</tr>
<tr>
<td>Intervention</td>
<td>Evolving; procedure inception</td>
<td>Evolving; procedure development</td>
<td>Evolving; procedure refinement; community learning</td>
<td>Stable</td>
</tr>
<tr>
<td>Method</td>
<td>Structured case reports</td>
<td>Prospective development studies</td>
<td>Research database; explanatory or feasibility RCT (efficacy trial); disease-based (diagnostic)</td>
<td>RCT with or without additions/ modifications; alternative designs (eg, SCOAP, STS, NSQIP); rare-case reports</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Proof of concept; technical achievement; disasters; dramatic successes</td>
<td>Mainly safety; technical and procedural success</td>
<td>Safety; clinical outcomes (specific and graded); short-term outcomes; patient-centred (reported) outcomes; feasibility outcomes</td>
<td>Clinical outcomes (specific and graded); middle-term and long-term outcomes; patient-centred (reported) outcomes; cost-effectiveness</td>
</tr>
<tr>
<td>Ethical approval</td>
<td>Sometimes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Examples</td>
<td>NOTES video</td>
<td>Tissue engineered vessels</td>
<td>Italian D2 gastrectomy study</td>
<td>Swedish obese patients study</td>
</tr>
</tbody>
</table>

RCT = randomised controlled trial. SCOAP = Surgical Clinical Outcomes Assessment Programme. STS = Society of Thoracic Surgeons. NSQIP = National Surgical Quality Improvement Program. NOTES = natural orifice transmural endoscopic surgery.

Table: Stages of surgical innovation
Classic scenario

It’s always too early (for rigorous evaluation) until, suddenly, it’s too late!

(Martin Buxton)
Narrow window of opportunity

- Wish for rapid progression to full implementation once early efficacy shown - skip I DEAL stage 3

The challenge...
- How can we evaluate rigorously BUT efficiently?
The challenge with the RCT

- Rigorous - yes
- Randomisation is the key ingredient

But... often perceived to be:
- Lengthy
- Overly burdensome & lots of data collection
- Requires lots of stand-alone infrastructure
- Requires unrealistic numbers of patients
Can we be smarter?

- If an RCT thought to be infeasible, do we have any options?
- Want to ensure we keep randomisation - the “pearl” of the RCT
- Can we make the infrastructure easier?
Example – the REBOA trial

- **REBOA** - Resuscitative Endovascular Balloon Occlusion of the Aorta
- **Device for management of exsanguinating haemorrhage after major trauma**
REBOA & I DEAL

• I DEAL 2a and 2b studies reported:
 – some good observational designs incl. propensity matched studies

• Conflicting evidence:
 – some studies showing benefit; however, others showing possible harm

• Clinical community see new device as beneficial

• High profile cases documented in news

• Initial perception – surely doing something better than nothing
Health

Balloon surgery stops fatal bleeding at roadside

By Smita Mundass
Health reporter, BBC News

© 17 June 2014 | Health

The moment a cyclist bleeding to death was saved - by a balloon fed through her leg: Woman, 24, undergoes emergency procedure after doctors decide she would not survive journey to hospital.

London's Air Ambulance crew have become the first team in the world to use a balloon device to control catastrophic bleeding at the roadside.
Dilemma

- Clinical community want to go straight to implementation
- Evaluators wish to conduct IDEAL Stage 3 RCT especially as some prior conflicting evidence

- Compromise...
 - Short window of evaluation
Classical RCT design

- **Primary outcome** - 90 day mortality
- **Current 90 day mortality estimate** = 33.5%
- **To detect 5% absolute reduction** ($\alpha = 5\%$; 80% power) requires 2684 patients
- **Only ~ 125 possible patients in England every year**
- **Over 20 years to recruit**
- **NOT FEASIBLE!**
Options

- Easy option
 - skip evaluation

- Alternative?
 - Bayesian trial design?
Bayesian trial design

- Fundamentally different to classical RCT
- Gives the probability of a specific treatment effect *given observed data*
- Probability based decision-framework - parallels with HTA decision-making
- Generates iterative estimates of effect - combines prior information with accruing data
- Properties can be modelled for any sample size
Bayesian approach

- Start with feasible sample size
- Set preferred rules
- Model design characteristics
- Decide if acceptable to clinicians, trialists and funders
- If yes, then feasible

Bayesian approach - outlines what you *can* say with the data you have available
Bayesian approach for REBOA

- Feasible sample size 120 (2 year recruitment)
- Rules: maximise the probability to stop early if signal for harm - three planned analyses

The probabilities of early stopping are:
- high if REBOA results in markedly decreased 90-day survival and roughly 19% if there is no difference to standard care
- below 10% if REBOA is a success with OR ≥ 1.05

The probability that success is declared:
- is less than 2% if REBOA is harmful
- exactly 5% if both treatments are equal
- over 60% if REBOA does well (OR ≥ 1.2)
- over 90% if it does exceptionally well (OR ≥ 1.3)
Implications for REBOA study

- Transformed infeasible study into feasible study
- Retained randomisation - maximised rigour
- Still requires meticulous planning

However ...

- Judgement required: are the design characteristics “good enough” to allow clinical decision-making?
Smart data collection

- National registry for all major trauma patients - TARN
- Designed REBOA trial data to map onto routine TARN data collection - requires good collaboration with the registry owners
- ALL trial data (except randomisation in the ER) collected using routine infrastructure
- Minimises extra work for clinicians (and patients)
Implications for IDEAL

- Stage 3 – often squeezed

Options for making Stage 3 smarter ...

- Retain randomisation wherever possible
- Evaluations can be made more efficient through planned use of registries
- Using a Bayesian trial design can allow an RCT where conventional approaches seem infeasible

 However, not a panacea - requires careful thought and planning & may still decide not feasible
Further literature

- FDA guidance on use of Bayesian stats for medical device Clinical Trials:

 https://www.fda.gov/MedicalDevices/ucm071072.htm

Acknowledgements

Thank you for your attention

Contact details:
• m.k.campbell@abdn.ac.uk
• @marionkcampbell

The UK-REBOA trial has been funded by the NIHR HTA programme (ref no 14/199/09)